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J. Phys: Condens. Malt- 4 (1992) 3719-3741. Printed in the UK 

Flow-induced phase transitions in rod-like micelles 

M S "er and M E Cates 
Universily of Cambridge, Cavendish Laboratow, Madingley Road, Cambridge CB3 OHE, 
UK 

Rscived 23 August 1991 

AbslraeL Mk study the dynamics of wlf-assembling md-like micells under both shear 
and elongational flow. We asume a simple reaction scheme in which WO micelles can 
fuse only if they are mllinear. This results in a p i l i v e  feedback mechanism between 
micellar alignment and growth. W define %,**k as the readion time for a typical 
micelle and r..t as its mtational diffusion time. We consider both the Limiting cdse of 

W r..~. By matching lhese limiting results we are 
able to make some predictions for the general case. ln elongational Row we predict a 
gelation transition, at some critical flow rate, to a phase of mremely long rods which 
are Wly aligned with the Row axis. It is shown lhat these 4 s  can be of a length which 
is my much greater than the mean micellar length in the absence of Row but which b 
still stable with respect to the Lension pmduced in a Bow. We find that lhe analogous 
m i t i o n  in shear Row is absent although the mean micellar sue near the flow axis is 
still aped& to increase Sharply ai high flow rates. We briefly discus the relevance of 
our calculations to experiments on shear-induced stlllctures in micellar systems. 

< T,., and lhat of 

1. Introduction 

It is known that certain surfactant molecules can, under the correct conditions, self 
assemble reversibly to form large one- or two-dimensional (ZD) structures in solution 
111. The one-dimensional aggregates are polymer-like or rod-like micelles (depending 
on stiffness) whilst the 20 case represenrs a bilayer. In either case the structures' 
formed can be. extremely large: in the case of polymer-like aggregates linear di- 
mensions of several thousand angstroms can be obtained. Experimental work on 
these self-assembling systems has shown that the structures have a highly non-linear 
response in imposed flow fields which is a consequence of the large size and tran- 
sient character of the aggregates. In this paper we will restrict our attention to 
the behaviour of stiff, rod-like micelles which occur in, for example, aqueous ?TAS 
(tetradecyl trimethyl ammonium salicylate). Such micelles are known to be extremely 
stiff in the absence of added salt where a typical rod length might be 300 8, [2, 31 
whereas the electostatic persistence length [4] is of order 3000 A or more. In the 
presence of some added salt one can expect the micelles to be semi-flexible although 
it remains a sensible starting point to treat the rods as completely stiff. Thus we 
assume a simple reaction scheme in which two micelles can fuse only if they are 
collinear, this implies, by detailed balance, that the reverse reaction proceeds by a 
single rod breaking to produce two collinear daughter chains. 

Recent experimental work [2, 31 on aqueous ms, and other systems close to the 
overlap threshold of the micelles, has concentrated on measuring the birefringence 
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and viscosity as a function of shear flow rate. A steep rise in both of these properties 
is observed near a critical shear rate. The purpose of the present work is to develop 
a theoretical model of this, and related phenomena, in both elongational and shear 
flow geometries. For simplicity we ignore any interaction between micelles other than 
the process of reversible scission and fusion. In practice [5] Coulomb interactions 
may play an essential role in understanding the flow-induced Uansition of micellar 
system, which often arise at lower flow rates than those predicted by the simple 
theories outlined later. We hope to address this issue in future work. 

A preliminary account of some of our results has appeared in 161; a simplified 
treatment based on a ZLI model was reported in [7]. Later we give a full account of 
our new results for 3D Rows in the limits of both fast and slow scission reactions. In 
elongational flow we establish the possibility of a second-order phase transition to a 
phase of fully aligned extremely long mds. The mechanism for this transition can 
be explained thus: as the flow is turned on the rods align in the flow and become 
longer due to the increased amount of material in the preferred direction. The 
longer rods have a reduced angular mobility (the angular mobility being a strongly 
decreasing function of the length) and are thus more strongly mnvected in the flow. 
At a certain, critical flow rate this feedback mechanism becomes catastrophic and we 
postulate that 'inhnite' rods are formed (see figure 1). In practice the length of these 
rods is limited by hydrodynamic tensile forces arising from the elongational flow field 
[Sll]. It would not be suplismg in practice if the aligned rod or 'gel' phase in our 
model developed hexagonal or other long-range order. However this effect cannot be 
treated without explicitly including steric interactions between rods. 

M S Tumer and M E  Cates 

Gelation now 

~ ~ ~ 

Fin  1. Diagram showing the eEect of elongational flow on self-assembled rods. 

Our work is based on a set of coupled non-linear integrodifferential equations 
that couple the convection and diffusion of rods to explicit h e t i c  equations for 
their scission and recombination. % basic regimes can be distinguished, that of 
fast breaking (where scission kinetics are rapid on the timescale of rotation) and the 
opposite limit of slow breaking. 

We shall, in section 2, present in detail a model that should apply for the fast 
braking limit This is solved in section 3 for the case of elongational flow which is 
analytically tractable 161. The case of shear flow is, however, more involved and in 
section 4 we employ a new scaling analysis for the fast reaction limit (which allows 
a prediction of whether or not there exists a flow-induced phase transition in any 
flow geometry). This method predicts that there is not a true flow-induced phase 
transition in full 3D shear flow although there is still a strong feedback between 
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alignment and growth. Mathematically, the 3D shear case is on the margin of the 
parameter region where a flow-induced transition to aligned long rods can arise. 
It may be that interaction terms, here ignored, could produce such a transition in 
practice. This scaling analysis is explained fully in section 4 where it is also applied 
to the case of elongational flow and is found to agree with the analytic result derived 
earlier. 

In Senion 5 we study in some detail the opposite limit of slow breaking, focusing 
on elongational flow, and discover a flow-induced transition that is basically similar 
in character to the one predicted already for the fast breaking regime. We give our 
conclusions, and a brief discussion of relevant experimental data in section 6. 

As mentioned earlier, in this paper we do not mnsider any rod-rod interac- 
tions which may lead to spatial ordering, such as hexagonal phases. We do include 
some dynamic effects of steric interactions between rods, but only in a simplified 
way through the form chosen for the rotational diffusion constant. We expect this 
treatment of entanglements to give qualitative results in all regimes of concentration, 
the approximation becoming more reliable in the dilute regime where the exact form 
of the diffusion constant is known [12]. The rotational diffusive behaviour of entan- 
gled micellar rods has been discussed in detail recently [l3] but only in the linear 
response regime whereas the collective non-linear behaviour at strong alignments is 
of relevance here. This is complicated because the degree of entanglement is a strong 
function of alignment [12]; we suppress this dependence, for simplicity, in the present 
work 

Recently Wang and co-workers [%lo] have studied the behaviour of a similar 
rod-like micellar system in elongational flow by incorporating a Kramers-type hydro- 
dynamic potential [14] into the Gibbs distribution. For shear flows in two dimensions 
Wang has developed [9] an analogous approximation which involves decoupling the 
angle-dependent size distribution of rods. This approach is questionable in several 
respects. It must fail in the fast breaking regime (rml 2 rbreak), i.e. when the flow 
effects and reaction kinetics cannot, even approximately, be decoupled. This is the 
main regime of interest in the present work We also expect that, close enough to 
any flow-induced transition, involving extremely long rods, the longest rods present 
must undergo scissionkombination reactions on a time scale fast compared with their 
rotational relaxation. (This is because the scission time of a rod of length L varies 
as 1/L whereas rmt - L3.) Hence the decoupling model of Gelbart a al [&IO] is 
unsuitable to study critical effects. 

2. Model for fast reactions regime 

21. Assumptions 

We take as our microscopic reaction scheme a (fomard) scission reaction and a 
(reverse) recombination reaction between collinear rods defined as follows [U]: 

(i) Scission reactions occur randomly at any position along the length of the rod 
with a probability k per unit length per unit time, where k is a rate constant. 

(U) The recombination reaction proceeds with a rate which is proportional to 
both the product of the concentrations of the reacting species and to a second rate 
constant IC'. 
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We define rbEd m be the reaction time for an average micelle [15], 

where A, is the mean micellar length in the absence of flow. Strictly speaking 
rbreak is the mean time for an average micelle to break once at any point along its 
length. However this must be of the same order as the average recombination time 
(by detailed balance). Hence only one time constant is needed to characterize the 
reaction scheme. 

We also define rmmt as the diffusive rotation time of an average micelle, given by 
the inverse of its angular diffusion constant. It is known that, for dilute slender rods 
of length L, the angular diffusion constant, D( L) is given by 1121, 

with b the diameter of the rod, qs the solvent viscosity and y % 0.8 (or very weakly 
a function of L / b ) .  In contrast, for entangled slender rods at volume fraction 4, the 
behaviour is roughly 1121 D ( L )  - +-2L-7. l%s is subject to a non-linear correction 
at strong alignment of the rods which we ignore in the present work. It is also subject 
to corrections at very short times, t 5 reentanglement, for which unentangled motion 
is recovered. In studying the entangled regime we assume rbrea B reentanglement 
which a l l m  us to ignore this correction [13]. FZom now on we will, for simplicity, 
approximate D( L) as an inverse power of L in all concentration regimes: 

D ( L )  = D , / L <  (approximate form) (3) 

where Do and C are constants. Given that the properties of the system do not depend 
critically on the precise value of C (which, as we shall see later, is the case for C 2 3) 
then we expect any results derived using (3) to remain qualitatively accurate whatever 
the precise functional form of D ( L ) .  lb avoid having too many different regimes, 
we will restrict attention to C > 2, which is always justilied on physical grounds. We 
may therefore define 

The regime which we consider here, and throughout sections 3 and 4, is rbre& &: 
rmt. This inequality expresses the condition that inter-rod reactions occur many times 
before a typical rod has had time to significantly rotate. We shall denote this the ‘fast 
reactions’ regime. It is clear, however, that the assumption of tast reactions compared 
with rotation must always fail for short enough rods, L 5 1, with 

We expect the ‘fast reactions’ approximation to be accurate when 1 <1: A,. Although 
we do not necessarily expect such an inequality to hold in a very dilute solution of 
rods it can presumably occur in the entangled case, when inter-rod collisions are 
frequent, and the angular mobility is greatly reduced [12]. 

We now make a further assumption that reactions are uncorrelated; this implies 
that when any rod breaks the two daughter rods are no more likely to recombine 
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at a later time with each other than with any other rods. Although this mean-field 
approach will fail for extremely long rods, when there are very few similar rods 
with which to react, we expect to obtain qualitatively accurate results throughout. 
As justification for this statement we observe that as the mean-field approximation 
breaks down a certain proportion of reactions can be described as ‘true’ reactions (in 
the sense of our mean-field approach) and the remaining ones are ‘null’ reactions 
which effectively do nothing, such as one rod breaking and then recombining with 
itself. The presence of these ‘null’ reactions will, in effect, modify the reaction time, 
T ~ ~ ~ ~ ,  but provided that we still remain in the fast reaction regime, we expect the 
overall behaviour to be qualitatively similar. 

Note finally that we allow only collinear rods to react. This is the only scheme 
consistent with OUT requirement of completely stiff rods. It is equivalent to assuming 
an infinite bending energy for rods which not only implies completely stiff rods but also 
forbids the transient ‘kinks’ which would occur in any reaction between non-collinear 
rods. The dynamics of semi-flexible elongated micelles are more complex because 
of the coupling that exists between reactions and rotation. Reactions between non- 
collinear micelles must in some sense redistribute material between angles. However, 
since we consider the stiff rod limit here, this coupling is absent. 

22. Equations of modon 

We now define +(L,u) as the concentration of rods of length L with director parallel 
to the unit vector U. In any system where the rods are allowed to explore three 
dimensions the unit vector U will span the surface of a unit hemisphere. (The unit 
hemisphere is appropriate since rods with directors U and -U are indistinguishable.) 

Given the microscopic reaction scheme and the further assumptions set out earlier, 
it is now possible to write down an evolution equation describing the rate of change 
of $( L, U) per unit time [U] under the influence of reactions alone: 

~ ( L , u )  = - k L + ( L , u )  + 2 k /  + ( L ‘ , u ) d L ’  
m 

L 

k’ + -  2 LL L‘,u)  dL’ - IC’+( L ,  U) +( L‘, U) d L‘ 

(6) 

where the first term corresponds to a rod of length L breaking to form two shorter 
rods, the second term represents a longer rod breaking to produce a rod of length L 
@Ius another piece), the third term represents two shoner rods combining to form 
a rod of length L and the fourth term representr a rod of length L combining with 
another rod to make a longer rod. First we observe that, with E the local bee 
energy cost for breaking a micelle (in units of IC&. the rate constants must obey, by 
detailed balance, the condition 2 k / k ’  = e x p ( - E ) .  Hence we obtain, as the general 
steady state solution (d(L,u) = 0) of (6), 

+(L ,u )  = exp( -E)  e x p ( - L / X ( u ) ) .  (-4 
In the absence of a mechanism to redistribute rods between angles the angle- 
dependent average rod length X(U) is arbitrary. However in the presence of angular 
diffusion (and without, at the moment, any flow or other external field) we require 
that +(L,u) is isotropic and so A(u) can be replaced with the constant, A,. 
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Parallel micellar rods reach local chemical equilibrium on a timescale rbreak. Pro- 
vided that the condition T~~~~ < rmt is satisfied then the micellar length distribution 
relaxes to the exponential form described in (7) very much faster than rods can dif- 
fuse between angles. When we consider the effect of flow on the micellar length 
distribution, we will continue to assume local equilibrium at each angle provided also 
that r,,, < <-l with < the flow rate. This condition ensures that local equilibrium 
is reached before the material is convected between angles in the flow. As previously 
mentioned there is always a low molecular weight ’tail’ of short rods (those with 
L < I, see (5)) for which angular rotation is rapid. For these rods, our model based 
on local equilibrium at each angle fails; we shall need to discuss this population in 
more detail later on. However, in the fast reaction regime (rbreak 6: rrOOt) we can still 
say that *(L,u) is given by (7) for rods of length L > 1. 

Defining the arc length density per unit volume, per unit solid angle (of U space), 
as p ( u )  we have 

Hence, after integrating over all U space we obtain an expression for the total arc 
length density per unit volume. We choose units so that this coincides with the volume 
liaction, @, which is a measure of the mass of micellar material in the system: 

@ = exp(-E)/A(u)’d’u. (9) 

By considering (9) in the absence of flow we can relate @ and A, as 

@ = 2?rexp(-E)Ai. (10) 

We are now interested in fmding the steady-state solution for the system of mi- 
cellar rods, undergoing reversible scission, in the presence of diffusion and imposed 
flows. In general +(L,a) is made up of two terms, 

1 I ( L , U )  = Fl[+(L,U)l t F,[+(L,=)l (11) 

where F,[+( L ,  U)] is a term which arises from the rotational diffusion and convection 
of the rods and F,[$(L,u) ] ,  defined by the right-hand side of (6), arises from the 
scission and recombination reactions between rods. One important fact about the 
functional Fz[$( L,u)], given our assumption allowing only collinear reactions, is 
that Fz[+( L,u)] cannot redistribute material between angles. By substituting (11) 
into (8) we therefore obtain, 

m 
P(u) = LFl[+(L,=)ldL (12) 

where a similar integral, involving F , [ + ( L , - ) ] ,  must vanish identically. We will show 
that, for +(L,u) of the form of (7), (12) completely determines the size distribution 
in steady state. 

Ib End PI, we introduce a Wkker-Planck equation appropriate to a mixed system 
of rods of lengths and orientations given by $(L,u). We first note that the mean 
angular drift velocity of the rods U( L ,  U) obeys [12] 

~ ( L , u )  = -D(L)Rln + ( L , u )  t f ( u )  (13) 
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U x (K .U), K is the fluid velocity gradient tensor and R is an angular where f (u )  
gradient operator defined as 

with ei the unit vector in the ith direction and ui the coordinate in this direction. "be 
first term on the right-hand side of (13) can be identified with the angular diffusion of 
the rods whose average angular velocity is included by way of the 'Brownian potential', 
In + ( L , u )  [12]. The second term represents the convective motion of rods in the 
flow. For a given w ( L , u ) ,  U changes with velocity w x U ,  and the equation for 
F,I+V, U)] becomes, 

With w ( L , u )  given by (13) this is the standard result for the convection/diffusion of 
rods of length L in a fluid moving with a velocity gradient described by K. 

We now substitute (13) and (15) into (12) and, in order to find the steady-state 
solution, we set p = 0. This yields the following equation 

R [lm LD( L ) R $ ( L , u )  d L  - f (u )JCe  L+( L , u )  dL] = 0 .  (16) 
0 

Now we substitute for +( L ,  U) from (7) and D( L) from (3) to obtain 

R I D o ~ m L 1 - ( R e x p ( - L / X ( u ) ) d L - f ( u ) ~  L e x p ( - L / A ( u ) ) d L  = O  

(17) 
1 m 

where the second of the integrals is easily evaluated as X(U)*. 
The fust of the integrals in (17) is more delicate, and to evaluate this term 

correctly it is  necessary to consider the minority of short pods in the system for which 
L 5 1 obeying (5). These short rods have an angular relaxation time less than T~~~ 

so our assumption of local equilibrium must fail. However, in the fast reaction regime 
considered here (A, >> I), even flow which strongly align most of the micelles will 
have little effect on those of size 1 or less which can be considered as isotropict. 
Hence we can write in (13) 

Rln +(L,u) % 0 L < 1  (18) 

using the property that R operates on a constant to yield zero (R being a differential 
operator). We see that these ironopic rods of length 1 or less impose in effect a short 
length cutoff for the integrals in (17). In principle we should introduce a smooth 
crossover function at L - 1 but for simplicity we merely set 1 as the lower limit of 
the integrals. The effect of this cutoff is negligible (to leading order in [/A,,) on the 
second of the integrals in (17) and also on the first of the integrals in (17), so long 

t ?he assumption that rods of length 1 are almost isotropically distributed can be mnlirmed a ped& 
for all flow rates of inlerest m the discussions of Row-induced transitions hat  follow. 
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as C < 3. However 1 becomes a relevant parameter for C 2 3 since the first of the 
integrals in (17) is divergent at the lower limit in this case. 

We now proceed m evaluate the first of the integrals in (17) for each regime of 
the parameter C (assuming always C > 2). We will use the following dimensionless 
quantities to describe the mean rod length, 

M S Zhmer and M E  C a m  

A(u) = X ( u ) / l  

A, = & / l .  

Qn performing the integrals in (19, in the regimes C < 3, C = 3 and C > 3 
respectively (with a short length cutoff at L = L properly incorporated) we obtain 
[161, 

R [-C,A(u)'-(RA(u) -k f(u)A(u)'] = 0 

R[-C,A(U)-'RA(U) + f(u)A(u)'] = 0 for C > 3. (2W 

for C < 3 (204 

R [-Tb;:Bk[ln(A(u)) - -f]A(u)-'RA(u) + f(u)A(u)*] = 0 for C = 3 (206) 

Here the " a n t s  are C, = ~ ,&~r(3 -<)  and C, = ( ( C - ~ ) T ~ ~ ~ = ~ ) - ' ;  r(r) is the 
usual gamma function and y = 0.577 Euler's constant. The differential equations 
(20) are much simpler than might have been expected since they involve only the 
rescaled mean micellar length, A(u) ,  rather than the full distribution @ ( L , u ) .  This 
reduction in the effective number of degrees of freedom is the direct result of our 
fast reaction assumption, whereby the micelle size distribution at a given angle is an 
equilibrium one, corresponding to a (scaled) angledependent mean rod length A(u).  

The equations (20) are derived to leading order in the limit 1 / X  - O t .  In using 
(5) for 1, we assume that this crossover length exceeds any physical short cutoff of 
the micellar length distribution, such as the rod diameter, b. If instead b > 1, it is 
necessary to set 1 = b in later equations. 

23. Potential pOws 

It is straightfomrd to solve (20) for A(u) in the case of a potential flow. Such a 
flow is defined so as to satisfy the equation 

RV(u)  = -f(u). (21) 

For some scalar function V ( u ) .  In fact elongational flow is a potential flow whilst 
shear flow is not. This makes the following analysis inappropriate for shear flow. 
Using (21) we may integrate directly the equations (20) for A(u). The form of the 
results differs in the three regimes of C defined in (ZO), and we present them in turn. 

t %king this limit is the cause of the apparenr discontinuity in the functional form of the governing 
equation near 5 = 3. In a physical system we a p e n  the form of the governing equation to vary smoothly 
with any mntrol parameter, such as C,  and, in practicq the contributions from a small but mite l / X  will 
pnmde the 'rounding' of any apparenl dimntinuities. One can quanti@ this by calculating the size of the 
regime near C = 3 where the iunclional forms of (Za?) and Qlk) are unchanged (to leading order). With 
C = 3 zk 6 we find that (2Oa) and Qlk) arc MI significantly modified provided that r(6) 2 ( i /X )6 /6 .  
For the purposes of the calculations we enter into here we will merely need lo assume that f / X  < 1 
and 50 the equations (20) hold w e r  the majority of C space whilst varying smoothly near C = 3. 
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A ( u )  = C,V(u)-'/C (224 

with C3 = (C, /C)'/'. 
(ii) For C = 3 substituting (21) into (206) and integrating ne obtain 

A(=) = C,V(u)-'13 (2%) 

with C, = (ln(Xo/1)/3rbreak)1/3, where we have ignored the angle dependence 
within the logarithmic term using the approximations that In(A(u)) c ln(Ao/l) > y. 

(iu) For C > 3 substituting (21) into ( 2 0 ~ )  and integrating we obtain 

A(u) = C,V(U)-'/~ (22)  

with C, = (C2/3) '13.  

These results are all derived for the case where the angular diffusion constant 
D(L) is proportional to an inverse power of the rod length, as given in (3). It is 
possible to consider other forms for the diffusion constant, such as the rigorous form 
for dilute rods given in (2). In this case in order to calculate any quantities dependent 
on the form of A(u)  it is necessary to resort m numerical methods. Where (2) is 
used (16) becomes 

ln(L/b)e-L/X(") 
L ~ L A ( u ) - ~ R A ( u )  + RV(u) = 0.  (23) 

The solution of this equation for elongational Row is used for comparison with (22) 
in section 3.1. 

3. Three-dimensional elongational flow: fast reaction regime 

We will now consider for the Erst time a specific Row geometry, elongational Row 
with axial symmey 1121. The velocity gradient tensor for uniaxial elongational flow 
(along the i direction), with Row rate t ,  is K, where K = ? / 2 ( 3 f i  - I); hence. it 
is easily shown that U x K . u = U x ( 3 t ) / 2 f ( u t  2). Using this expression and (21) 
we integrate to obtain, 

V ( u )  = ;qv0 - Ti:, (24) 

where the constant of integration U,,, with vo E [l,co), is determined by r e q u h g  
the total amount of micellar material in the system to be equal to Cp. This condition 
is expressed in (9). Using (24) in (22) we are able to revmite (9) as 

@E-- @iE - / A ( u ) 2 d 2 u  = 27rAi 
- 
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where 6 is a dimensionless measure of the amount of micellar material in the system. 
Here and later we use the power-law form for the angular diffusion constant, D( L) = 
DOL-( (see (3)), and give results for the three regimes of C (C < 3, C = 3 and 
C > 3) simultaneously. This results in some cumbersome displayed equations, such 
as (Z), but avoids duplicating a large amount of algebra. In fact the physics does 
not differ much in the three cases. 

Using (25) we can determine vo for an arbitrary choice of 6 and i and hence, 
via (22), obtain the angledependent mean micellar length A(=) for these values. An 
important feature of (25) is that as either 6 or L is increased, uo decreases until when 
U, = 1 each integral in (U) reaches a finite maximum. (This statement applies so 
long_as C > 2, which we have already assumed to be the case on physical grounds.) 
For @ constant and 6 varying we define a critical flow rate tc at which the constant vo 
first reaches unity. As i - t;, the average length near the zdirection diverges, with 
a square-integrable singularity at tc. (This conclusion depends on our assumption of 
flow independent k, k' and is modified slightly later.) 

3.1. Gelation Fansition 

The key question that now arises is, 'what happens if, at constant 6, i is increased 
above tc?'. For L > tc the steady-state size distribution calculated in (25) can no 
longer account for all the material in the system and so we postulatet that the excess 
material resides in a phase of extremely long rods aligned along the flow axis. Hence 
we formally write down an expression for 
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as 

for c < 3 

{ ~ , ~ ( q r ) - 2 / 3 ( 1  - ~ : ) - ~ / 3  for c > 3 

C~~(:~)-~/C(I - U:)-Z/C 

(26) 
6 

~ ( u ) ~  = -@62(~, - 1) + ~ , ~ ( 3 ) - ~ ~ 3 ( 1 -  u;)-2/3 for c = 3 
2n 

where ~ 5 ~ ( u , - 1 )  isdefined hereso that J J 6 Z ( u s - l ) d 2 u  = 1. For t > <,wemay 
write 6 as, 6 = 6no,md(i) + where 6normal(t) is the solution (6) to (25). 
for the required value of < and wth  U,, = 1. This is the mass of 'normal' material in 
the system, ie. that residing in rods with finite length, The m a s  of material in the 
'gel' phase of fully aligned long rods, accounts for the difference between 
the total mass 6 and the 'normal' mass. 

(for i - 2  3) or ~'.,,,,I (x t -z / (  (for C < 3). Imposing the boundary condition 
@ = @normal at .? = kc implies that 6n,,,,I = 6(t / :c)-2/3 and so we obtain an 
expression for 

From (U) we can see that, at or above the onset of the transition, 6,,,m,I t - 2 / 3  

valid for t 2 &. 

(27) 
6(1 - ( ~ / < ~ ) - z / ( )  

@(I  - (:/&)-2/3) 

for c < 3 
for c 2 3. 

6'gel = { - 
t An alternative way of dealing Hith the case 01 < > i, is to asume that no steady slate exists in 
this regime. This seems improbable on physical grounds (at least in elongational Row). Equation (26) 
rcprsenu an exact solulion of the equations of motion for all U* < 1. Whether or not the singularity 
proposed at us = 1 b formally a mlution 01 these equations remains open; it is probably a moot point 
sincc rod-md intenclions are cectain to play a m h  in the gel phase. 
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Since we now know the behaviour of the system for all ; we can make predictions 
for, for example, the birefringence, An, as a function of elongational flow rate. We 
present in figure 2(u) a theoretical plot of the birefringence An, which obeys [12], 

This is calculated from (26) and (27) with c 2 3. Note E” figure 2 that the 
birefringence varies smoothly near Z = tC. “:‘I.Yh 

0 . 2  

0 .  i 

0.9 I 1 , s  

F@m 2. n e  -led birefringence AnfAn,,.. where A n  is the birefringence and 
An,.. is the maximum birefringence (all the material contained in rods aligned with 
the flow axis). plotted against i f ;=. n e  plol is obtained numerically from (26) with 
c 2 3. 

It is interesting to compare qualitatively this theoretical plot for the birefringence 
with recent experimental data for rod-like micelles [3]. Experimental data only exist 
for a shear-flow geometry; no data are so far available in the elongational geometry. 
Nonetheless we note that the predicted theoretical behaviour (for dongutionul flow) 
is in qualitative agreement with experimental results (for shew flow), at least at 
relatively high salt concentrations. However at low salt concentrations, where we. 
might expect the rods to be more stiff and hence our model to be more appropriate, 
the birefringence rises steeply from a low initial value at the onset of the gel phase 
[3], a feature which is not reproduced in the theoretical plot of figure 2. Although we 
are comparing WO very different flows it would be suprising if, in practice, shear flow 
were to exhibit more dramatic flow effects than elongarional flow, in which there is 
a stable flow axis. This observation suggests that rod-rod interactions, here ignored, 
may be important in practice. 

Setting uo = 1 at the transition in (25) we derive [I61 expressions for Z,, 

C6 D( A0 1 for C < 3 

c ~ D ( X ~ ) ( + ~ ~ ~ ~ ~ D ( X ~ ) ) ~ - ( / (  for c > 3 
i c =  { C7 ~ n ( X , I O ~ ( ~ o )  for C = 3 (29) 

where the three constants C,, C, and C, are of order unity and have been calculated 
explicitly [16]t, although they depend somewhat on the mathematical treatment of 
the crossover to short rods at L 

t Ws find [16] 

I, as discussed following (18). 
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Directly from (29) we have icrmt = 1, for C < 3, which tells us that the critical 
flow rate is of the order of the inverse of the rotation time of an average micelle. 
However for C > 3 we find instead that i c ~ m t  N [ T ~ ~ ~ / T ~ ~ ~ ~ ~ ] ( ( - ~ ) ~ ~  B 1. In this 
regime we have instead that the critical flow rate is very much greater than r;;. 

We have shown that the dimensionless quantity ic~root is very sensitive to whether 
C is above or below 3. This suggests that for dilute mds, which have C = 3, the 
logarithmic correction to the diffusion constant (2) may be important. ?b study this 
we can solve (23) numerically and can compare the result with (22) for the case 
of elongational flow. We see from figure 3 that the logarithmic correction to the 
diffusion constant does not greatly affect the form of A ( u )  which remains close to 
that obtained using (206) when C = 3. Both of the plots shown in figure 3 represent 
systems at i = i, (the flow rate at which the length fist diverges at u2 = 1) and 
both plots have the same mean length, A = 100, at uz = 0. 

0.6 0.8 1 .o 
Figure 3. The dimensionless mean micellar length, A = ,411 plotted against us lor two 
different forms of D ( L )  (as shown). In both cases i = i, and A = 100 at = 0 
(the two systems have slighlly differen1 values 01 +). We o n  see that the logarithmic 
mrrection (0 the diRusion mnstanl doer not greatly affect the tom of A(u)  which 
remains dose to that obtained with D ( L )  Y L-3.  

3.2. Dircussion 

As discussed following (29), our model always predicts icrPot 2 1 whereas experimen- 
tally it has been found that, in several micellar systems [SI, flow-induced transitions 
arise even for 2=rror < 1. This feature cannot be explained within the present frame- 
work and may be due to the presence of strong Coulombic interactions in these 
systems. 

In describing the system for 2 > 1, as a 'gel' phase we do not imply any form of 
crosslinking, merely the existence of a population of extremely long rods. However, 
we do expect our gel to exhibit some physical properties similar to those of a classical 
gel, e.g. high Viscosity and long relaxation times, as found in experiments on Bow- 
induced structures in rod-like micellar systems [2, 31. 

We should note, as emphasized elsewhere [S, 91, that due to the effect of lon- 
gitudinal tension the extremely long rods making up the gel phase cannot, in fact, 
have infinite length, as assumed mathematically in our treatment. It is known that 
the tension at the centre of a slender rod of length L in elongational flow, T, is 
given by [Ill, T = ~ 7 7 ~ i L ~ / 2 l n ( L / b ) .  In order to obtain an expression for the 
maximum stable length at a given flow rate, L,, ,J<),  we need to relate T to the 
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micelle scission energy, E. We make the assumption that in order to break a micelle 
the force. T must act over a distance of order b (the micellar diameter). Hence the 
micelle can sustain a maximum tension T FJ E / b .  This allows us to find expressions 
for the maximum stable length at transition, L' = LmU($)  using (29). We obtain 

for C = 3 

with C, = 2Eb(-3/?rq,D,  a dimensionless constant. With E of order a few k,T 
(and ignoring all logarithmic factors) we find that C, sx 2 E / 3  is of order unity and 
hence (30) implies that L'/A, > 1 since A , / l >  1 and l / b  > 1. 

Since L' >> A,, we expect that our model of the transition to a gel phase 
consisting of infinite rods will give correct results, to a first approximation, although 
the tension effect will cause the transition to be slightly rounded, with the nominally 
infinite rods having a very large but finite length L,,,. As t increases the length 
Lmax will continue to decrease and eventually, when L,, A,, hydrodynamic 
tensmn effects begin to dominate and our description will break down. We do not 
pursue this here since rod-rod interactions, which we have ignored, are presumably 
large throughout the gel phase. 

4. Scaling analysis 

We have already seen in section 3 that for a 3D system in elongational flow there 
exists a second-order phase transition at Iinite mass, 6, and flow rate, :c At or 
above this transition A diverges near the flow axis like an inverse power of the angle 
-9 to the Edirection. We now employ a scaling analysis, first presented elsewhere 
[A, which can be wed to determine the existence of a gelation transition. In what 
follows we extend this analysis to 3D elongational flow (section 4.1) and to 3D shear 
flow (section 4.2) where the governing equations, (20), cannot be solved directly. 

4.1. Scaling for elongational pow 

We first apply our analysis to 3D elongational flow, so that we may make a comparison 
with the analytic results of section 3. We convert the equations (20) to spherical polar 
coordinates. Since we have axial symmetry there is no 4 dependence. We find, 

d 
dB 

d 

CllA(0)l-(-A(O) + sin Bcosf3A(B)2 = 0 

C,zh(@)-2,A(e) +sin ecoseil(e)z = o 

for c < 3 

for c = 3 

(31a) 

(316) 

d 
C13A(e)-z-,i(@) dB -k sin ecoseA(e)2 = o for > 3 (314  
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with Cil(t) = 2r(3-{)/3?rbrtok, &(t) = 21n(A0)/3trbEak’ (We have assumed 
In A ( u )  =In A, > y, as used in (2%)) and C13(?) = 2/3({ - 3)&rbreat.) 

We now assume a scaling (power-law) form for the angle dependence of the scaled 
mean micelle size A(@): 

M S Z ” r  and M E  Cates 

A(@) - e-” for 6 ex 1. (32) 

Next we. impose the condition that powers of 6 must balance in (31). Hence, 

which together imply the results p = 2/{, for { < 3, and p = 2/3, for { > 3. Thus 
we are able to predict a form for A(@) (near 6 = 0) which diverges at 6 = 0 in a 
way which is consistent with (31). Supposing there to be a continuous transition to a 
gel phase, just such a divergence in the mean micelle size is expected at the critical 
point. TI see if such a transition can indeed takes place, we ask whether this form 
of A(S) corresponds to a bounded total mass 6, which is @en, according to (9), as 
6 = JA(u)2d2u. If our choice (32) for A corresponds to a bounded mass, then 
we deduce that at fixed flow rate ? the mean length may diverge near the Row axis 
for some (finite) total mass, and hence a transition to a phase of ‘infinite’ rods near 
the flow axis may occur. If, on the other hand, this choice of A corresponds to an 
unbounded total mass then we infer that the transition cannot take place. 

The required contribution to the total micellar mass from rods near f3 = 0 is 
governed, in three dimensions, by the following integral: 

This integral is finite for p < 1 which implies that a hansition point exists in 3D 
elongational Row (since p < 1 in this case). The predictions of this scaling analysis, 
for the form of the divergence near 6 = 0 and the existence of a transition, are in 
complete agreement with the analytic results of section 3. 

In a previous communication [A we applied this scaling analysis to a quasi 2D 
system, where the rod directors are constrained to lie in a plane. It was found that the 
gelation transition is absent when an elongational flow is applied to this system. In 
this case the calculations follow closely the calculations for 3D elongational flow, with 
the Same values of p obtained from the scaling argument, except that the integral 
governing the mass in the system is not a surface integral, as in (34), but a line 
integral over a semicircle (due to the fact that the rods were restricted to motion 
in a plane) ~oA(f3)2df3. This integral is found to be unbounded when the mean 
length diverges near 0 = 0 and hence a transition cannot arise. The extra power of 
0 in (34), arisiig from the fact that (34) is a surface integral, proves to be crucial in 
determining whether a transition may occur or not. The case of 2D shear flow was 
also considered [7]. For this case the scaling analysis predicted p = 1 implying that 
a gelation transition cannot arise. 
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4.2. Scaling fw 3D shear flow 

We now consider the case of rods undergoing full 3~ motion in shear flow. As 
in section 4.1 we use spherical polar coordinates and consider a simple shear flow 
with the fluid velocity in the idirection and its gradient in the cduection. The 
neutral axis is then 5. !n spherical polar coordinates about the i a x i s  we then have 
f(x) = 4 sin' 0 sin 44, where 6 b the flow rate. We can also rewrite R as 

For simplicity we now consider only the regime > 3, for which the equation of 
motion is given by (2Oc). Substituting for f(u) and R (2Oc) becomest, 

1 a 
ae ' [  ae - C,A-*-A + A2tsin2 @sin q5 

(36) 

Once again we will employ a scaling argument to find a form for A(0, +), repre- 
senting a divergence in the mean micellar length, which is consistent with (36). We 
will then calculate the resultant total mass of micellar material. If a divergence in A 
can occur at finite mass then we deduce that a gelation transition can arise, while if 
inlinite mass is required, we deduce that it cannot. 

We must first determine the orientation for which the mean micellar length may 
diverge. We expect the only stable orientation for rods of infinite length, if indeed 
they exist at all, to be at 6 = 0 on the grounds that at linite 0 the rods will experience 
an infinite torque. This assumption is consistent with the behaviour of non-interacting 
unbreakable rods. In such systems as < is increased from zero the maximum of $(e )  
first occurs at 6 = 3 ~ 1 4  and, as 6 is increased, the position of this maximum tends 
monotonically towards 0 = r (equivalent to 6 = 0). This behaviour is reproduced in 
our numerical results on quasi 2D systems of rod-like micelles [7]. 

We therefore assume that any divergence in A occurs at 0 = 0. We first suppress 
the $dependence and look for a scaling solution of the form of A - 9-fi for 6 a 1. 
By substituting this form for A into (36) and requiring that powers of 6 balance, we 
obtain 

,g-l[gfi-l+ @ - 2 f l ]  e-l[gfi-l + 0"-1 + 92-2fi 1 (37) 

which implies that p = 1. This analysis, which neglects the +dependence, suggests 
that A - 8-l. This naturally leads us to attempt to find a more general solution of 
the following form: 

A ( @ , + )  =g(+)e-' .  (38) 

t The mrresponding version of (36) for C = 3, derived from cob) ,  is identical up to an exchange of Cz 
for the mnslant CIO. 
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Substituting (38) into (36), with j(+) = g(4)-l, we have 
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+ e3[ .  . .I + ,  .. = 0.  (39) 

In the limit 0 i 0 we assume that all terms in (39) proportional to B",  with 
U > 0, vanish. Thus g(4) is defined (in terms of it5 inverse j = g-l) by requiring 
the first term in (39) to vanish. We write this explicitly as 

-c, -+j + j - * ~ s i n + = O .  (aa; ) 
lkking the solution of this equation to define g(4) = j(b)-I we have found, as 

required, a solution to the equation of motion (2oC). which takes the scaling form 
(38) in the limit of B -+ 0. 

We now need to ask how the total mass of material in the system is affected by this 
form of A, diverging near B = 0. The total mass is finite provided the contribution 
arising from rods near B = 0 is finite. This we can write as 

The factor JB=, B-'dB diverges, although only logarithmically, and so we conclude 
that a divergence in the mean micellar length at B = 0 cannot arise for finite 6 and 
so a gelation Uansition cannot arise in 3D shear Rowt. However since the existence 
or othenvise of a transition is marginal ((41) is only logarithmically divergent) we 
expect that even very weak effects, which have been neglected here, could induce a 
transition. Inter-rod interactions, either steric or electrostatic in origin, could be just 
such effects. 

5. Slow reaction regime 

In section 2 we dealt with rods in the fast reaction limit for which < T". In 
this section we derive a theory describing rods in the opposite, 'slow reaction' regime 
T , , ~ ~ ~ ~  > T~~~ where a typical rod has time to rotate many times before a reaction 
occurs. The slow reaction assumption must always fail for sufficiently long rods L 2 1 
whose micellar scission time is less than their rotation time. However, we expect the 
slow reaction regime to be relevant (at least for the majority of rods) provided A, < 1. 
In order to define 1 we need to consider the waiting time for a reaction to occur on 
a rod of length 1 (1  > A,), written r,. This waiting time is approximately the waiting 
time for a scission reaction to occur:. We use the definitions of T~~~~~ = l/kXo (1) 
and A. = X o / l  (196) in order to write T~ as 

t nte only way that his divergence can be avoided is if g(+) = 0 for all 0; from (40) we see [hat this 
is not lhe case. 
$ For long rods (of length 1 > Xo), scission reactions occur on a much shorter LimeScale than combination 
reactions (a [actor of order A o / l  shoner). 
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The length I is then defined as the length at which r,D(E)-' = 1. Hence we End 

1 = (Do%reakAo)llC. (43) 

In this section we consider only 3D elongational Rows. We take A. < 1 which 
defines the slow reaction regime. Just as for the fast reaction case considered in 
sections 2-4, there is always a part of the micelle size distribution for which the 
assumed separation of time scales is not valid. In the slow reaction limit, the difficulty 
lies with the small fraction of rods of length L 2 1. These rods will always be 
important near a gelation transition, and to describe adequately any such transition 
we will need to match in some way the two populations of rods (L  1 and L >> 1 )  
near L = 1. The matching we employ later introduces errors at the quantitative level 
but the method should yield qualitatively accurate results. 

It is known [12] that for dilute, slender rods in elongational flow the (un- 
normalized) probability distribution for the orientation of a single rod of length L 
is 

G L ( u )  = e x p 3 & ; / 4 D ( L ) .  

We now argue that the population of rods with length L relaxes to its equilibrium 
angular distribution on a much shorter time scale than that characterizing reactions 
of rods. Hence the distribution of an ensemble of non-interacting rods is given by 

where p is a rescaled flow rate defined as p = 3i/4 and +( L) = +( L ,  u)d2u is 
the total number density of rods of length L,  as yet undetermined. 

Even amongst those rods with L < 1, whose rotation is rapid compared with 
kinetic timescales, there are two well-defined classes of rod lengths. The first consists 
of rods which are so short that they do not feel the effects of convection and hence 
are isotropic. These are rods for which L 1, 

i= ( D o / p ) ' " .  (45) 

The second class consists of rods which are sutiiciently long to feel the effects of the 
Row, Le. i < L < 1. Using the definitions of and I we have 

ill = (pTbreak~O)-l/( .  (46) 

We now substitute (44) into the equation of motion (6), which describes the effect 
of the inter-rod reactions, and integrate over all u-space. This gives an equation that 
determines +(L) in the presence of the inter-rod reactions. We find that $ ( L )  is 
given by the steady-state solution ($( L )  = 0) to the following equation 

& L ) =  - IcL$(L)+2k  $(L')dL' L= 
-I- k'/2 iL +(L' )+(L  - L ' ) F ( L ' ,  L - L') dL' - k'+(L) 

x lm +( L ' )F(L ,  L ' )  dL' (47) 
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where F( L,,  L y )  is an effective reaction kernel for recombination between hvo rods 
of length L, and L,, and is defined as 

M S Tumer and M E Cam 

We can evaluate F( L,,  Ly) in the following three asymptotic limits: (i) L, ,  L ,  > 
6 (ii) L ,  > is L,; and (iu) L,, L ,  < i. Using the following properly, 

(49) 
for L ,  > i 
for L, i. 

for L,, L ,  > i 
for L,  > i> L,  
for L , ,  L ,  < i. 

(50) 

5.1. Strongly convected rodr 
Rods with lengths L B i are strongly convected in the flow field and thus are highly 
anisotropically distributed. In order to describe the distribution of these rods we first 
m i t e  (47) for L > i, substituting for F from (50). to obtaint, 

We seek a scaling solution of & L )  = 0, from (51). By substitution we confirm 
that the foIIowing is an asymptotic solution to & L )  = o in the limit L > i, 

$ ( L )  ~ e x p ( - E ) @ - ' D ( L ) e - " ~  (52) 
provided n i  2 1. Note that in fact (52) is also a solution when n = 0 but not 
for intermediate values of n. In order to obtain (52) we have used the identity 
e x p ( - E )  = 2k/k' (see (7)). We can think of K as a parameter which determines 
the mass of material residing in strongly convected rods with < L < 1. For K > i-', 
$( L )  decreases sharply with increasing L and hence there is little material contained 
in rods with L > ?. As K is lowered +( L )  decreases less sharply (and hence there 
is more material in rhese rods) until, at IF - f-', (52) ceases to be valid and $(L) 
takes on some other, unknown, functional form. However as the mass of rods with 
L > f is increased (52), with & once again becomes a steady-state solution to 
(51). corresponding to a certain value of this mass. We identify this ( K  = 0) solution 
as the maximum of ~ ( L ) ,  corresponding to a maximum in the mass of material which 
can be contained in rods with i < L 
t The intmduction of a short-lenglh cutoff at L' = i for the integrals in (65) is an approximation, and 5 
be exacl the integrals should-extend down lo L' = 0 with the comecl a m o v e r  m F included at L' = 1. 
However, in $e limit L > I considered here, the emrs introduced by this approach turn OUI lo be of 
lhe order of (I/L)' and so we relain (47) as slated. 

1. 
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5.2 Gelarion &ansition 

We have derived, in (52), an expression for + ( L )  valid in the regime f -=c L -=z 1. 
By combining this result with an upper hound for the mass of material made up of 
isotropic rods with L -=z f, we are now able to derive an approximate expression for 
the maximum mass of micellar material, for a given flow rate p. The dependence on 
p is not seen explicitly in what follows but is contained implicitly in the definition 

The total mass of micellar material contained in rods with L < I is denoted 
@L,<l .  In the absence of flow most of the material will reside in rods with L < 1 (in 
this case we can show that @ / @ L < l  = 1 + O(Ai)). In this section we are interested 
in how the "?mum of @,,,, denoted @E%, varies with f(p). We first define 
as 

(45) of 1. 

i I 

@ L < I  = 1 L+(L)dL  + L q ( L ) d L  (53) 

where the first and second terms on the right-hand side are from now on denoted 
G L < i  and @ i < L < r  respectively. The quantity G L < i  represents the mass of micellar 
material residing in roughly isotropic rods with L < i, whilst the quantity @i<L<l 
represents the mass residing in strongly convected rods with i < L < 1. 

In order to determine @i<Lc<l we take + ( L )  to be of the form of (52) in the 
entire region f < L < 1. Hence we do not attempt to model the precise form of 
+(L,u) near the crossover L = i but we do not expect this approach to alter our 
results qualitatively. We can predict the maximum value that @ i < L < r  can take (as a 
function of p), denoted @y'L<l, by setting n = 0 (as discussed in section 5.1). We 
find that @rTL<l is given by 

@Fa I<L<I -exp(-E)?. - (54) 

This is the maximum mass of material that can be stored in rods of length L obeying 
i < L < 1, Le. those rods sufficiently long to be strongly convected by the flow hut 
not so long that their rotation time exceeds their reaction time. 

In order to obtain an approximate value for @;"<:; (the maximum of G L < ~ ) ,  we 
arguet that + ( L )  is roughly flat, and can be approximated by $( L) N exp(-E), for 
the isotropic population L < l. Hence @;yi can be approximated as 

@;yi = e x p ( - q i 2  (55) 

which is of the Same order of magnitude as @?&. 
t We observe that +(O) = e x p ( - E )  (this can be mnfirmed 5 substitution into (43, with the appropriate 
form of F l" (SO)). We find an approdmate value for @ ( l )  by extrapolating (52) down to L = 1. We 
are interested in the maximum mass solution and so we restrict our attention lo the K = 0 case. We 
find that, with K = 0,  q(1) I e x p ( - E ) .  Hence, assuming that t h ~  function + ( L )  is roughly flat for 
the isompic rods (L < I ) ,  and since we now know that +(O) 2 + ( I )  cz enp(-E) we can appmximate 
+(L)  2 e x p ( - E )  for L < 1, at least when K = 0 (which is the maximum mass solution, of interest 
here). 
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We can now write down an approximate value for @E?, which we will use to 
predict the existence of a phase transition. Using (55), (54) and (46) we obtain 

We notice from (56) that the maximum mass of material residing in rods with length 
L < I (for a given flow rate p) is bounded. Similarly, by inversion, there exists a 
flow rate, denoted p,,,.,, which is the solution to (56) when all the material could just 
be contained in rods with L < 1, Le. @y<; = a. (In practice there are always some 
rods with L > 1 but for p = p,, these remain a minority.) 

Using (56) it can easily be shown that 

Pm, = D(A0) (57) 
with A, the quiescent mean rod length, as before. We also find that the mass of 
material which can be contained in rcds of length L < E at flow rates above this 
maximum value is given by 

where @ is the total mass in the system. 
We can now ask the question 'What happens to any afra mass that may be 

present beyond this maximum value?'. We assume that as p is increased above p,,, 
a small number of rcds with L > I will be created near the flow axis. These rods 
are sufficiently long that our slow reaction assumption does not apply; they cannot 
be described using (16). However, we may discuss their behaviour using the methods 
developed in sections 2 and 3 for the opposite limit of fast reactions. We will show 
that a gelation transition to a phase of extremely long, fully aligned rods is predicted, 
identical in character to rhe transition described in section 3. 

In order to take accOunt of any rods with L > 1 that may be created we first 
look at the form of $(L, U) for 1 > L B f. In this regime $( L)  = J $( L ,  U )  d2u  
is given by (52) with K = 0. We can rewrite $ ( L , u )  as $ ( L , O ) ,  with 0 the angle 
between U and the Row ( 2 )  axis @y symmetry there is no 4 dependence). Using 
(52), (44) and (49), and with 8 1, we find 

Q(L,f3)= exp(-E)e- Ps2 /D(L )  for 1 > L B i. (59) 

6 = ( ~ T , , , , , A , ) - ' / ~ .  (60) 

We can see that the density of rods with L Y 1 is strongly peaked near f3 = 0 
with an RMS width obeying 

We now arguet that any mass which, according to (SS), cannot be accommodated in 
rods with L < I ,  goes into rods with L > I and that these extra rods exist mainly in 

t This approximation is sensible provided: (I) mds wilh L > I are effectively h e d  in space, i.e. they 
break into fragments with L 5 I M o r e  they have time to mtate significantly; (ii) mds with L > I are 
only aeated in the region 1.91 < 8. Assumption (I) is certainly true for mds with L B I and it is a 
sensible starling point Lo assume that it is true for L > I. humpl ion  @i)- is also plausible since the 
mncentralion of mds with L U I (S9) is highly peaked in the region 1.01 < 0 and a recombination type 
reaction, necessary lo create a md with length L > I, is proportional to the square of the mnecnlration 
of reaclants. These assumptions will introduce emon at the quantitative level but we expect our results 
(0 remain qualitatively accurate. 
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the region 101 < i. We can therefore write down an approximate expression for the 
mass of material residing in rods with L > I, 

We may further approximate the +( L ,  0 )  in (61), describing rods with L > 1, 
by the form derived in the fast reaction model of section 3. This is the relevant 
model for any population of rods with a mean length wry much greater than 1. 
We assume that the results of section 3 hold, even though in this case the rods are 
restricted to a small angular region. This assumption should be valid since, in the fast 
reaction limit, there is no coupling between rods with different orientations. Given 
this approximation (61), for the mass contained in long rods, is very similar to (25) 
(although (61) is an integral over a mall  angular region) and wing the results of 
section 3 and (60) it is straightforward to evaluate the maximum value that QL,, can 
take as a function of flow rate, denoted @;";I. For brevity we take { > 3 (although 
similar results can be obtained for 2 < { < 3). We find that 

2 exp(--)12(p~~Tb,.kAO)-1. (62) 

Since we now know the mass of material that can be contained in either the long 
( L  > 1 )  or the short ( L  < I) rod populations, as a function of flow rate, we can 
finally proceed to calculate the critical flow rate as a function of mass. As discussed 
in section 3 the critical Row rate, denoted p,, represents the Row rate for which 
the maximum mass (including both populations of finite rods, L < 1 and L > I )  
coincides with the actual mass present in the system: 

Q, = + @y;l defines transition (63) 

whereas for p > 0, we presume, as in section 3, that the excess mass resides in a gel 
phase of fully aligned long rods. 

Using (58), (56) and (62) we can solve (63) to find that pc is only marginally 
greater than p,,,,,. In faat ,  

Hence, for the slow reaction limit, a flow-induced transition is reached almost as soon 
as there is a significant fraction of material in rods of L > I (material for which the 
slow reaction approximation has, in fact, broken down). 

We can now summarize, for the slow reaction regime, the behaviour of the system 
as the flow rate is varied (at cnnstant mass). As the flow rate is increased from zero 
the rods become more aligned until near some flow rate p,,,,, the mass could just all 
be contained in rods with L < 1 (although there will already be some small fraction 
of rods with L > I at this point). Above this flow rate some extra rods are created 

t We have assumed that (52) 'is the appropriate description of rods with L 5 I at the transition. This is 
the m e  provided that i Q I .  We now have an expression- for & (65) which we on mmbine with (57) to 
show that Pcn,,e+k > 1 and hence, via (46), we have I Q 1. This result verifies. o pxrc&n, lhar (52) 
provides the appropriate description of rods wifh L C 1. 
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(near the Row axis) with lengths L > 1 and a treatment based purely on the slow 
reactions picture ceases to apply. As the flow rate is increased past p,, no dramatic 
behaviour is expected and the mean md length near the Row axis increases smoothly. 
However above same second, critical Row rate, p,, the material can no longer all be 
accounted for in mds of finite length and a gelation transition takes place (identical 
to the phase transition described in section 3). In fact we find (64) that p,, E p, 
and so the flow rate need only be increased marginally above p,, for the transition 
to occur. 

We have thus shown that there exists a critical flow rate in the slow reaction 
regime above. which a gel phase of infinite rods may arise. We may argue that since 
a phase transition occurs in both the fast reaction (A, % 1) and the slow reaction 
(A,, < 1) regimes it is reasonable to assume that a similar transition occurs for all 
values of A,. We can then use the results of this section and of section 3 to predict 
2c for a general value of A,. For C < 3 we have ic a r;: independent of whether 
A, K 1 or A, B 1. ?his suggests that Cc o( 7;; for all values of A,,. For C > 3 we 
have kc a ( ~ ~ ~ / r ~ ~ ~ & ) c - ~ / c r ; t  for A,, > 1 and C., 0: 7;; for A,, <' 1. We expect 
some smooth interpolation between these WO forms for ic to be appropriate in the 
crossover region A, ,- 1. 

6. Conclusions 

We have developed a theory describing the behaviour of micellar rods in flow. The 
steric interactions between rods are included only by way of the form of the angular 
diffusion constant and no long-range forces are included. We find that in elongational 
flow there exists a critical Row rate above which a gel phase of extremely long rods 
may arise. This critical Row rate is expected to exist in all regimes of micellar length 
since the mass of rods of finite length is bounded above by a decreasing function of 
flow rate. The critical Row rate, kc, is found to scale with the characteristic relaxation 
times of the quiescent material according to 

rr;t fast reactions, C < 3 
zc ,- ( 7 m t / 7 ) c - 3 / c ~ ; t  fast reactions, 5 > 3 { .;t slow reactions. 

We have found that a similar mnsition does nor exist in three-dimensional shear flow, 
although the problem is marginal. It seems likely that other inter-micelle interactions, 
even if small, could induce a transition in this case. 

Very recent new experimental results on micellar rods in shear Row from the 
Bayreuth group [5] suggest the aeation of a completely aligned phase of rods at ex- 
tremely low shear rates (much less than the inverse of the characteristic rotation time 
of an average micelle). This is not consistent with any of the mechanisms considered 
in this paper. These results strongly suggest that some collective phenomenon (one 
involving many rods with a long relaxation time) is responsible. A natural candidate 
is the strong coupling that arises when electrostatic effects are present. Therefore 
these effects may play an important role in the behaviour of these systems under Row. 
Indeed, in some systems, they may contribute towards the steep rise in viscosity and 
birefringence, near some critical flow rate, which is observed experimentally 12, 3, 51. 
Our model, as it stands, is inappropriate to describe these effects hut should remain 
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valid, either for reverse systems [17] (surfactant in oil) or for non-ionic systems (nei- 
ther of which exhibit strong Coulomb effects), as well as providing a starting point for 
the development of more refined theories. One possible extension, with which one 
might hope to model the Coulomb forces, is to include a nematic interaction term in 
the equation of motion. We hope to tackle this in future work. 
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